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Italy

E-mail: patricio.gaete@usm.cl and spallucci@ts.infn.it

Received 14 December 2007, in final form 14 March 2008
Published 18 April 2008
Online at stacks.iop.org/JPhysA/41/185401

Abstract
Features of screening and confinement are studied for a non-Abelian gauge
theory with a mixture of pseudoscalar and scalar couplings, in the case where
a constant chromoelectric, or chromomagnetic, strength expectation value is
present. Our discussion is carried out using the gauge-invariant but path-
dependent variables formalism. We explicitly show that the static potential
profile is the sum of a Yukawa and a linear potential, leading to the confinement
of static probe charges. Interestingly, similar results have been obtained in the
context of gluodynamics in curved spacetime. For only pseudoscalar coupling,
the results are radically different.

PACS numbers: 12.38.Aw, 14.80Mz

One of the most challenging, and still open, problems in high energy theoretical physics is the
quantitative description of confinement in quantum chromodynamics (QCD). Recent advances
in string theory provide a promising new framework to face the non-perturbative features of
Yang–Mills theories (for a recent review, see [1]).
However, phenomenological models still represent a key tool for understanding confinement
physics. In this context we recall the illustrative scenario of dual superconductivity [2], where it
is conjectured that the QCD vacuum behaves as a dual-type II superconductor. More precisely,
because of the condensation of magnetic monopoles, the chromoelectric field acting between
qq pairs is squeezed into strings (flux tubes), and the nonvanishing string tension represents
the proportionality constant in the linear potential. Lattice calculations have confirmed this
picture by showing the formation of tubes of gluonic fields connecting colored charges [3].

With these considerations in mind, in a previous work [4], we have studied an effective
non-Abelian gauge theory where a Cornell-like profile is obtained in the presence of a nontrivial
constant expectation value for the gauge field strength

〈
Fa

µν

〉
coupled to a light pseudoscalar

boson field ϕ (‘axion’). In fact, this theory experiences mass generation due to the breaking
of rotational invariance induced by the classical background configuration of the gauge field
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strength, and in the case of a constant chromoelectric field strength expectation value the static
potential remains Coulombic. Nevertheless, this picture drastically changes in the case of a
constant chromomagnetic field strength expectation value. In effect, the potential energy is
the sum of a Coulomb and a linear potential, leading to the confinement of static charges.
It should be noted that the magnetic character of the field strength expectation value needed
to obtain confinement is in agreement with the current chromomagnetic picture of the QCD
vacuum [5]. Incidentally, the above static potential profile is analogous to that encountered
in Yang–Mills theory with spontaneous symmetry breaking of scale symmetry [6]. This then
implies that although the constraint structure of the two models is quite different, the physical
content is identical. As a result, our study has provided a new kind of ‘duality’ between
effective non-Abelian theories.

On the other hand, in recent times the coupling of axion-like particles with photons in
the presence of an external background electromagnetic field and its physical consequences
have been the object of intensive investigations [7–19], after recent results of the PVLAS
collaboration [20]. Let us also mention here that these effects can be qualitatively understood
by the existence of light pseudoscalar bosons φ (‘axions’), with a coupling to two photons. In
this context, it was suggested in [22] that the spin-zero particle describing the PVLAS results
could be one of no definite parity. The reason is that within the low energy regime used by
PVLAS the spin-zero particle could well be one of no definite parity, that is, a mixture of
pseudoscalar and scalar. Certainly, if the PVLAS results are supported by further experimental
data, it would signal new physics containing very light bosons [23]. Given its relevance, it
is of interest to understand better the impact of spin-zero particle–gluon interactions on a
physical observable. Seem from such a perspective, the present work is an extension of
our previous studies started in [21] and continued in [4]. To do this, we will work out the
static potential for a theory which includes scalar and pseudoscalar particles coupled to a
non-Abelian gauge field using the gauge-invariant but path-dependent variables formalism.
Our treatment is fully non-perturbative for the spin-zero field. As a result, we obtain that the
potential energy is the sum of a Yukawa and a linear potential, leading to the confinement of
static charges, which clearly shows the key role played by the scalar particle in transforming
the Coulombic potential into the Yukawa one. This may be contrasted with the role played by
the noncommutative space in transforming the Yukawa potential into the Coulombic one, in
the context of noncommutative axionic electrodynamics [24]. Interestingly enough, the above
static potential profile is analogous to that encountered in gluodynamics in curved spacetime
[25]. Therefore, the above result reveals a new equivalence between effective non-Abelian
theories, in spite of the fact that they have different constraint structures. Accordingly, the
gauge-invariant but path-dependent variables formalism offers an alternative view in which
some features of effective non-Abelian gauge theories become more transparent.

We shall now discuss the interaction energy between static point-like sources for the
model under consideration. To this end we will compute the expectation value of the energy
operator H in the physical state |�〉 describing the sources, which we will denote by 〈H 〉�.
The starting point is the Lagrangian density:

L = −1

4
Fa

µνF
aµν +

1

2
(∂µϕ)2 − 1

2
m2ϕ2 +

λ+

4
ϕFa

µνF
aµν +

λ−
4

ϕF̃ a
µνF

aµν, (1)

where m is the mass for the spin-zero particle. Here, Aµ(x) = Aa
µ(x)T a , where T a

is a Hermitian representation of the semi-simple and compact gauge group, and Fa
µν =

∂µAa
ν − ∂νA

a
µ + gf abcAb

µAc
ν , with f abc as the structure constants of the group, whereas λ+ and

λ− are coupling constants for scalar and pseudoscalar particles, respectively.
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The Lagrangian (1) provides an effective description of axion-like particles interacting
with chromoelectric and chromomagnetic fields. Thus, from a phenomenological point of
view, m2 and λ± were put ‘by hand’ and not related in any simple way to the Yang–Mills
coupling constant g and energy scale �QCD.

As we have indicated in [21], to compute the interaction energy we need to carry out the
integration over the ϕ-field. Once this is done, we arrive at the following effective theory for
the gauge fields:

Leff = −1

4
Fa

µνF
aµν +

λ2
+

32
Fa

µνF
aµν 1

� + m2
Fb

µνF
bµν

+
λ2

−
32

F̃ aµνF a
µν

1

� + m2
F̃ bµνF b

µν +
λ+λ−

16
Fa

µνF
aµν 1

� + m2
F̃ bµνF b

µν. (2)

Next, after splitting Fa
µν in the sum of a classical background

〈
Fa

µν

〉
and a small fluctuation

f a
µν , the corresponding Lagrangian density becomes

Leff = −1

4
f a

µν

[
1 − 3λ2

+v
cλρvc

λρ

� + m2

]
f aµν +

λ2
−

32
vaαβf a

αβ

1

� + m2
vbγ δf b

γ δ. (3)

Here we have simplified our notation by setting εµναβ
〈
Fa

µν

〉 ≡ vaαβ and ερσγ δ
〈
Fb

ρσ

〉 ≡ vbγ δ .
We remark that the new feature of the present model is the non-trivial presence of the term

proportional to λ2
+. This point motivates us to study the role of the scalar field on a physical

observable.
We now turn our attention to the calculation of the interaction energy in the va0i �= 0 and

vaij = 0 case (referred to as the electric one in what follows). In such a case, the Lagrangian
(3) reads

Leff = −1

4
f a

µν

(
1 +

6λ2
+(v

c)2

� + m2

)
f aµν + vai0f a

i0

λ2
−
/
8

� + m2
vbk0f 0

k0. (4)

The canonical Hamiltonian can be worked as usual and is given by

HC =
∫

d3x

[
�ai

(
∂iA

a
0 + gf abcAc

0A
b
i

)
+

1

2
Bai

(
1 +

6λ2
+(v

c)2

� + m2

)
Bai

]

+
∫

d3x

[
1

2
�ai � + m2

� + M2
�ai − λ2

−
8

(vai�ai)
1

� + M2
(vbi�bi)

]
, (5)

where Bai is the chromomagnetic field, M2 ≡ m2 + 6λ2
+(v

a)2, and M2 ≡ M2 + λ2
−
/

4(va) =
m2 +

[
6λ2

+ + λ2
−
/

4
]
(va)2.

By proceeding in the same way as in [4], we obtain the static potential for two opposite
charges located at 0 and y:

V = − g2

4π
CF

e−ML

L
+ g2(ξ + g2ξ ′)L, (6)

where

ξ ≡ 1

2π

[
m2

4
CF ln

(
1 +

�
2

M2

)
− λ2

−
16

tr(vaiT avbiT b) ln

(
1 +

�̃2

M2

)]
(7)

and

ξ ′ ≡ tr(f abcf adcT bT d)

[
1

8π

(
�2 − M2 ln

(
1 +

�2

M2

))
+

m2

4
ln

(
1 +

�
2

M2

)]

− λ2
−

16
tr(vpif pbcT bvqif qdcT d) ln

(
1 +

�̃2

M2

)
, (8)

where � and �̃ are cutoffs.
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Expression (6) immediately shows both expected and unexpected features of the model.
The linear confining piece was expected from our previous study [4]. The novel feature is
the Yukawa piece. In fact, the above result clearly reveals the key role played by the scalar
particle (λ+ term) in transforming the Coulombic potential into the Yukawa one. As already
expressed, a similar form of interaction potential has been reported earlier in the context of
gluodynamics in curved spacetime [25]. Also, a common feature of these models is that the
rotational symmetry is restored in the resulting interaction energy.

Now we focus on the case va0i = 0 and vaij �= 0, which we refer to as the magnetic one
in what follows. Thus, we obtain from (3)

Leff = −1

4
f a

µν

(
1 +

6λ2
+(v

c)2

� + m2

)
f aµν + vaij f a

ij

λ2
−/32

� + m2
vbklf 0

kl, (9)

where µ, ν = 0, 1, 2, 3 and i, j, k, l = 1, 2, 3. Here again, the quantization is carried out
using Dirac’s procedure. The canonically conjugate momenta, as obtained from (9), are

�ao = 0, (10)

�a
i = Dab

ij f b
j0, (11)

Dab
ij ≡ δab

(
1 +

6λ2
+(v

c)2

� + m2

)
δij . (12)

The explicit form of the chromoelectric field turns out to be

Ea
i = � + m2

� + M2
�a

i , (13)

where M2 ≡ m2 + 6λ2
+(v

a)2. This leads us to the canonical Hamiltonian

HC =
∫

d3x

[
�ai

(
∂iA

a
0 + gf abcAc

0A
b
i

)
+

1

2
Bai

(
1 +

6λ2
+(v

c)2

� + m2

)
Bai

]

+
∫

d3x

[
1

2
�ai � + m2

� + M2
�ai

]
, (14)

where Bai is the chromomagnetic field.
We skip all the technical details and refer to [4] for them. The static potential turns out to

be

V = − g2

4π
CF

e−ML

L
+ g2(ξ + g2ξ ′)L, (15)

where

ξ = m2

8π
CF ln

(
1 +

�
2

M2

)
(16)

and

ξ ′ = 1

4

[
CF CAσ

2π2
+ m2tr(f abcT bf adcT d) ln

(
1 +

�
2

M2

)]
. (17)

Here, in contrast to our previous analysis [4], unexpected features are found. Interestingly,
it is observed that the introduction of the λ+ term induces a Yukawa piece plus a linear
confining piece. Note that in the λ+ = 0 case, the static potential remains Coulombic.
Again, the rotational symmetry is restored in the resulting interaction energy despite that
the chromoelectric external field breaks this symmetry.
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Figure 1. ‘Duality web’ between different Yang–Mills–Axiom models.

The presence of mass terms, coming from a non-vanishing background value for Fa
µν ,

suggests a possible analogy with the model introduced in [27], where the gluon mass is
produced through a non-vanishing vacuum expectation value of the composite operator A2

µ.
However, our approach is substantially different: the distinctive feature of our method is to
define the interaction potential between test charges in a manifestly gauge-invariant way. On
the other hand, the non-vanishing vacuum expectation value

〈
A2

µ

〉
in [27] is gauge dependent.

The authors claim that under some circumstances this quantity can be given a gauge-invariant
meaning, and we trust them, but a direct comparison with our approach is very hard, at this
level. A second difference, which is worth to remark, is different kinds of ‘energies’ which
are considered. The main purpose of [27] is to resolve the instability of the Saviddy vacuum.
Accordingly, the authors compute one-loop effective potential, i.e. vacuum energy density, in
the presence of a background chromomagnetic field and a condensate for A2

µ. On our side, we
determine the interaction energy between static charges, which is the static potential energy.
Comparison with [27] would require the calculation of the one-loop vacuum energy density for
our model, but this is a problem which is interesting by itself and cannot be fully investigated
in this short paper.

Let us put our work in its proper perspective. This paper is a sequel to [4, 21], where
we have exploited a crucial point for understanding the physical content of gauge theories,
that is, the identification of field degrees of freedom with observable quantities. Our analysis
reveals both expected and unexpected features of the model studied. It was shown that
the static potential profile is the sum of a Yukawa and a linear potential, leading to the
confinement of static probe charges. This result is obtained for both external chromomagnetic
and chromoelectric strength expectation values. This may be contrasted with our previous
study [4], where only a pseudoscalar coupling was considered. Also, the above analysis has
showed the key role played by the scalar particle in transforming the Coulombic potential
into the Yukawa one. Interestingly, similar results have been obtained in the context of
gluodynamics in curved spacetime [25]. An important consequence of this is that, although
the constraint structure of the two models is quite different, the physical content is identical.
This means that our study has provided a new kind of ‘duality’ between effective non-Abelian
theories which is summarized in figure 1.

We conclude noting that our results agree with the dilaton coupled to the gauge fields
mechanism [26]. However, although both approaches lead to confinement, the above analysis
reveals that the mechanism of obtaining a linear potential is quite different. As already
mentioned, in this work we have exploited the similarity between the tree level mechanism
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that leads to confinement here and the nonperturbative mechanism (caused by quantum effects)
which gives confinement in QCD in curved spacetime.
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